Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568820

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.

2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511048

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC50 < 5 µΜ), but more importantly, 3 compounds displayed very low toxicity (LC50 > 100 µΜ). We also assessed the potential of an N-(1-aryl-1H-indol-5-yl)aryl-sulfonamide scaffold that was based on the structure of a hit compound, through synthesis of 30 derivatives. Their evaluation revealed 4 additional hits that inhibited osteoclastogenesis at low micromolar concentrations; however, cellular toxicity concerns preclude their further development. Taken together with the structure-activity relationships provided by the hit compounds, our study revealed potent inhibitors of RANKL-induced osteoclastogenesis of high therapeutic index, which bear diverse scaffolds that can be employed in hit-to-lead optimization for the development of therapeutics against osteolytic diseases.


Assuntos
Reabsorção Óssea , Osteogênese , Ligante RANK , Humanos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Proteínas I-kappa B , NF-kappa B/farmacologia , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Relação Estrutura-Atividade
3.
Biomolecules ; 13(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189361

RESUMO

Multidrug resistance is a significant barrier that makes anticancer therapies less effective. Glutathione transferases (GSTs) are involved in multidrug resistance mechanisms and play a significant part in the metabolism of alkylating anticancer drugs. The purpose of this study was to screen and select a lead compound with high inhibitory potency against the isoenzyme GSTP1-1 from Mus musculus (MmGSTP1-1). The lead compound was selected following the screening of a library of currently approved and registered pesticides that belong to different chemical classes. The results showed that the fungicide iprodione [3-(3,5-dichlorophenyl)-2,4-dioxo-N-propan-2-ylimidazolidine-1-carboxamide] exhibited the highest inhibition potency (ΙC50 = 11.3 ± 0.5 µΜ) towards MmGSTP1-1. Kinetics analysis revealed that iprodione functions as a mixed-type inhibitor towards glutathione (GSH) and non-competitive inhibitor towards 1-chloro-2,4-dinitrobenzene (CDNB). X-ray crystallography was used to determine the crystal structure of MmGSTP1-1 at 1.28 Å resolution as a complex with S-(p-nitrobenzyl)glutathione (Nb-GSH). The crystal structure was used to map the ligand-binding site of MmGSTP1-1 and to provide structural data of the interaction of the enzyme with iprodione using molecular docking. The results of this study shed light on the inhibition mechanism of MmGSTP1-1 and provide a new compound as a potential lead structure for future drug/inhibitor development.


Assuntos
Glutationa S-Transferase pi , Glutationa Transferase , Animais , Camundongos , Glutationa S-Transferase pi/química , Glutationa S-Transferase pi/metabolismo , Simulação de Acoplamento Molecular , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Isoenzimas/metabolismo , Cinética
5.
J Med Imaging (Bellingham) ; 10(Suppl 2): S22402, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825256

RESUMO

Purpose: Even though current techniques provide two-dimensional (2D) imaging of the mouse mammary gland, they fail to achieve high-resolution three-dimensional (3D) reconstruction and quantification. The objective of this study is to establish and evaluate quantitative visualization of the mouse mammary epithelium through microcomputed tomography (microCT) using phosphotungstic acid (PTA) as a contrast agent. Approach: Ex vivo microCT scan images of the mouse mammary glands were obtained following staining by PTA, whereas for quantification we adapted volumetric parameters that are used for assessing trabecular bone morphometry and can be structurally applicable in the mammary ductal system. The proposed method was validated in distinct developmental stages and upon short-term treatment with synthetic progesterone, using the carmine alum staining for comparison. Results: We demonstrate a simple PTA staining procedure that allows high contrast 3D imaging of mammary glands and quantitation of mammary duct structures using microCT. We validated the proposed method in distinct developmental stages, such as at puberty, adult mice, pregnancy as well as upon progesterone treatment. Compared with carmine alum staining, the microCT analysis provided higher resolution 2D and 3D images of the mammary gland morphology, with lower background that enabled the detection of subtle changes. Conclusions: This work is the first study that employs PTA-enhanced microCT for 3D imaging and volumetric analysis of mouse mammary glands. Our results establish PTA-enhanced microCT as a useful tool for comparative studies of the mouse mammary gland morphology that can apply in mutant mice and for the preclinical evaluation of pharmaceuticals in breast cancer models.

6.
J Proteome Res ; 21(2): 375-394, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983179

RESUMO

The outer mitochondrial membrane protein SLC25A46 has been recently identified as a novel genetic cause of a wide spectrum of neurological diseases. The aim of the present work was to elucidate the physiological role of SLC25A46 through the identification of its interactome with immunoprecipitation and proteomic analysis in whole cell extracts from the cerebellum, cerebrum, heart, and thymus of transgenic mice expressing ubiquitously SLC25A46-FLAG. Our analysis identified 371 novel putative interactors of SLC25A46 and confirmed 17 known ones. A total of 79 co-immunoprecipitated proteins were common in two or more tissues, mainly participating in mitochondrial activities such as oxidative phosphorylation (OXPHOS) and ATP production, active transport of ions or molecules, and the metabolism. Tissue-specific co-immunoprecipitated proteins were enriched for synapse annotated proteins in the cerebellum and cerebrum for metabolic processes in the heart and for nuclear processes and proteasome in the thymus. Our proteomic approach confirmed known mitochondrial interactors of SLC25A46 including MICOS complex subunits and also OPA1 and VDACs, while we identified novel interactors including the ADP/ATP translocases SLC25A4 and SLC25A5, subunits of the OXPHOS complexes and F1Fo-ATP synthase, and components of the mitochondria-ER contact sites. Our results show that SLC25A46 interacts with a large number of proteins and protein complexes involved in the mitochondria architecture, energy production, and flux and also in inter-organellar contacts.


Assuntos
Proteínas Mitocondriais , Proteínas de Transporte de Fosfato , Animais , Camundongos , Camundongos Transgênicos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteômica
7.
Front Endocrinol (Lausanne) ; 12: 720728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925226

RESUMO

A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".


Assuntos
Osso e Ossos/metabolismo , Genômica/métodos , Fenômenos Fisiológicos Musculoesqueléticos/genética , Animais , Osso e Ossos/patologia , Redes Reguladoras de Genes/fisiologia , Humanos , Camundongos , Modelos Animais , Fenótipo , Proteômica/métodos , Peixe-Zebra
8.
Front Endocrinol (Lausanne) ; 12: 731217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938269

RESUMO

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Doenças Musculoesqueléticas/genética , Animais , Animais Geneticamente Modificados , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/tendências , Humanos , Modelos Animais , Herança Multifatorial/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Fenótipo , Locos de Características Quantitativas , Integração de Sistemas , Estudos de Validação como Assunto
9.
J Bone Miner Res ; 36(8): 1636-1645, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33856714

RESUMO

Receptor activator of nuclear factor-κΒ ligand (RANKL) is necessary and sufficient to promote osteoclastogenesis and a key pathogenic factor in osteoporosis. Failure of periosteal apposition to compensate for bone loss due to endosteal resorption further contributes to bone fragility. Whether these two processes are biologically related, however, remains unknown. Using high-resolution peripheral quantitative computed tomography (HR-pQCT), we first examined cortical bone parameters at distal radius and tibia in postmenopausal women (PMW) as well as in cadaveric human adult humeri. Increases in medullary area were negatively correlated with cortical bone volume but positively with total bone volume, and this relationship was stronger in the dominant arm, suggesting a mechanically driven process. To investigate the role of RANKL in this dual process, we used mice overexpressing huRANKL (huRANKLTg+ ). Trabecular and cortical bone volume (Ct.BV) are reduced in these mice, whereas cortical total volume (Ct.TV) is increased. In these bones, Sost mRNA levels are downregulated and periostin (Postn) mRNA levels upregulated, hence providing a positive message for periosteal bone formation. In turn, genetic deletion of Postn in huRANKLTg+  mice prevented the increase in Ct.TV and aggravated bone fragility. In contrast, cathepsin K (Ctsk) ablation improved Ct.TV in both huRANKLTg+  and wild-type (WT) mice and stimulated periosteal bone formation, while augmenting Postn protein levels. Therefore, bone strength in huRANKLTg+ /Ctsk-/- mice was restored to WT levels. These findings suggest that high levels of RANKL not only induce endosteal bone loss but may somewhat restrict periosteal bone formation by triggering periostin degradation through cathepsin K, hence providing a biological mechanism for the observed limited increase in cortical area in postmenopausal women. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osso Cortical , Rádio (Anatomia) , Adulto , Animais , Densidade Óssea , Catepsina K/genética , Osso Cortical/diagnóstico por imagem , Humanos , Ligantes , Camundongos , Tíbia/diagnóstico por imagem
10.
Antioxidants (Basel) ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052508

RESUMO

Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be mediated at least in part by oxidative stress. The transcription factor nuclear erythroid factor 2-like 2 (NRF2) is a central regulator of antioxidant and cytoprotective responses. Thus, we hypothesized that NRF2 may play a role in glucocorticoid-induced metabolic disease and osteoporosis. To this end, WT and Nrf2 knockout (Nrf2KO) mice of both genders were treated with 2 mg/kg dexamethasone or vehicle 3 times per week for 13 weeks. Dexamethasone treatment led to less weight gain during the treatment period without affecting food consumption, as well as to lower glucose levels and high insulin levels compared to vehicle-treated mice. Dexamethasone also reduced cortical bone volume and density. All these effects of dexamethasone were similar between male and female mice, as well as between WT and Nrf2KO mice. Hepatic NRF2 signaling and gluconeogenic gene expression were not affected by dexamethasone. A 2-day dexamethasone treatment was also sufficient to increase insulin levels without affecting body weight and glucose levels. Hence, dexamethasone induces hyperinsulinemia, which potentially leads to decreased glucose levels, as well as osteoporosis, both independently of NRF2.

11.
J Med Chem ; 63(20): 12043-12059, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32955874

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) constitutes the master mediator of osteoclastogenesis, while its pharmaceutical inhibition by a monoclonal antibody has been approved for the treatment of postmenopausal osteoporosis. To date, the pursuit of pharmacologically more favorable approaches using low-molecular-weight inhibitors has been hampered by low specificity and high toxicity issues. This study aimed to discover small-molecule inhibitors targeting RANKL trimer formation. Through a systematic screening of 39 analogues of SPD-304, a dual inhibitor of tumor necrosis factor (TNF) and RANKL trimerization, we identified four compounds (1b, 3b, 4a, and 4c) that selectively inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, without affecting TNF activity or osteoblast differentiation. Based on structure-activity observations extracted from the most potent and less toxic inhibitors of RANKL-induced osteoclastogenesis, we synthesized a focused set of compounds that revealed three potent inhibitors (19a, 19b, and 20a) with remarkably low cell-toxicity and improved therapeutic indexes as shown by the LC50 to IC50 ratio. These RANKL-selective inhibitors are an excellent starting point for the development of small-molecule therapeutics against osteolytic diseases.


Assuntos
Cromanos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Ligante RANK/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromanos/síntese química , Cromanos/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Osteogênese , Ligante RANK/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Índice Terapêutico
13.
Artigo em Inglês | MEDLINE | ID: mdl-32180758

RESUMO

The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced µCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.


Assuntos
Adipogenia , Adiposidade , Medula Óssea/patologia , Obesidade/patologia , Projetos de Pesquisa/normas , Relatório de Pesquisa/normas , Animais , Guias como Assunto , Humanos , Agências Internacionais , Sociedades Científicas
14.
J Proteome Res ; 18(11): 3896-3912, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550165

RESUMO

We previously identified DNAJC11, a mitochondrial outer membrane protein of unknown function, as a novel genetic cause in modeled neuromuscular disease. To understand the physiological role of DNAJC11, we employed a proteomic approach for the identification of the DNAJC11 interactome, through the expression of DNAJC11-FLAG in HEK293FT cells and transgenic mice. Our analysis confirmed known DNAJC11-interacting proteins including members of the MICOS complex that organize mitochondrial cristae formation. Moreover, we identified in both biological systems novel mitochondrial interactions including VDACs that exchange metabolites across the outer mitochondrial membrane. In HEK293FT cells, DNAJC11 preferentially interacted with ribosomal subunits and chaperone proteins including Hsp70 members, possibly correlating DNAJC11 with cotranslational folding and import of mitochondrial proteins in metabolically active cells. Instead, the DNAJC11 interactome in the mouse cerebrum was enriched for synaptic proteins, supporting the importance of DNAJC11 in synapse and neuronal integrity. Moreover, we demonstrated that the DUF3395 domain is critically involved in DNAJC11 protein-protein interactions, while the J-domain determines its mitochondrial localization. Collectively, these results provide a functional characterization for DNAJC11 domains, while the identified interactome networks reveal an emerging role of DNAJC11 in mitochondrial biogenesis and response to microenvironment changes and requirements.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neuromusculares/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Animais , Cérebro/metabolismo , Predisposição Genética para Doença/genética , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Chaperonas Moleculares/metabolismo , Doenças Neuromusculares/genética , Ligação Proteica , Sinapses/metabolismo
15.
J Clin Invest ; 129(8): 3214-3223, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120440

RESUMO

Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne's muscular dystrophy (mdx) and denervation-induce atrophy, but its role and mechanisms of action on muscle weakness in other conditions remains to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKL-Tg+), or lack Pparb and concomitantly develop sarcopenia (Pparb-/-). In women, denosumab over 3 years improved appendicular lean mass and handgrip strength compared to no treatment, whereas bisphosphonate did not. HuRANKL-Tg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decrease anti-myogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb-/-, OPG increased muscle volume and force, while also normalizing their insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusions, RANKL deteriorates, while its inhibitor improves, muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence denosumab could represent a novel therapeutic approach for sarcopenia.


Assuntos
Osso e Ossos/metabolismo , Denosumab/farmacologia , Resistência à Insulina , Força Muscular , Ligante RANK/antagonistas & inibidores , Animais , Osso e Ossos/patologia , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patologia
16.
Front Immunol ; 10: 97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804932

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL. Notably, TNF overexpression could not compensate for RANKL-mediated osteopetrosis, but promoted osteoclastogenesis between the pannus and bone interface, suggesting RANKL-independent mechanisms of osteoclastogenesis in inflamed joints. On the other hand, simultaneous overexpression of RANKL and TNF in double transgenic mice accelerated disease onset and led to severe arthritis characterized by significantly elevated clinical and histological scores as shown by aggressive pannus formation, extended bone resorption, and massive accumulation of inflammatory cells, mainly of myeloid origin. RANKL and TNF cooperated not only in local bone loss identified in the inflamed calcaneous bone, but also systemically in distal femurs as shown by microCT analysis. Proteomic analysis in inflamed ankles from double transgenic mice overexpressing human TNF and RANKL showed an abundance of proteins involved in osteoclastogenesis, pro-inflammatory processes, gene expression regulation, and cell proliferation, while proteins participating in basic metabolic processes were downregulated compared to TNF and RANKL single transgenic mice. Collectively, these results suggest that RANKL modulates modeled inflammatory arthritis not only as a mediator of osteoclastogenesis and bone resorption but also as a disease modifier affecting inflammation and immune activation.


Assuntos
Artrite/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Ligante RANK/genética , Fator de Necrose Tumoral alfa/genética , Animais , Reabsorção Óssea , Modelos Animais de Doenças , Humanos , Imunomodulação , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Osteopetrose/genética , Proteômica , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-32038486

RESUMO

Research into bone marrow adiposity (BMA) has expanded greatly since the late 1990s, leading to development of new methods for the study of bone marrow adipocytes. Simultaneously, research fields interested in BMA have diversified substantially. This increasing interest is revealing fundamental new knowledge of BMA; however, it has also led to a highly variable nomenclature that makes it difficult to interpret and compare results from different studies. A consensus on BMA nomenclature has therefore become indispensable. This article addresses this critical need for standardised terminology and consistent reporting of parameters related to BMA research. The International Bone Marrow Adiposity Society (BMAS) was formed in 2017 to consolidate the growing scientific community interested in BMA. To address the BMA nomenclature challenge, BMAS members from diverse fields established a working group (WG). Based on their broad expertise, the WG first reviewed the existing, unsystematic nomenclature and identified terms, and concepts requiring further discussion. They thereby identified and defined 8 broad concepts and methods central to BMA research. Notably, these had been described using 519 unique combinations of term, abbreviation and unit, many of which were overlapping or redundant. On this foundation a second consensus was reached, with each term classified as "to use" or "not to use." As a result, the WG reached a consensus to craft recommendations for 26 terms related to concepts and methods in BMA research. This was approved by the Scientific Board and Executive Board of BMAS and is the basis for the present recommendations for a formal BMA nomenclature. As an example, several terms or abbreviations have been used to represent "bone marrow adipocytes," including BMAds, BM-As, and BMAs. The WG decided that BMA should refer to "bone marrow adiposity"; that BM-A is too similar to BMA; and noted that "Ad" has previously been recommended to refer to adipocytes. Thus, it was recommended to use BMAds to represent bone marrow adipocytes. In conclusion, the standard nomenclature proposed in this article should be followed for all communications of results related to BMA. This will allow for better interactions both inside and outside of this emerging scientific community.

19.
Neurochem Res ; 44(1): 154-169, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29777493

RESUMO

Human evolution is characterized by brain expansion and up-regulation of genes involved in energy metabolism and synaptic transmission, including the glutamate signaling pathway. Glutamate is the excitatory transmitter of neural circuits sub-serving cognitive functions, with glutamate-modulation of synaptic plasticity being central to learning and memory. GLUD2 is a novel positively-selected human gene involved in glutamatergic transmission and energy metabolism that underwent rapid evolutionary adaptation concomitantly with prefrontal cortex enlargement. Two evolutionary replacements (Gly456Ala and Arg443Ser) made hGDH2 resistant to GTP inhibition and allowed distinct regulation, enabling enhanced enzyme function under high glutamatergic system demands. GLUD2 adaptation may have contributed to unique human traits, but evidence for this is lacking. GLUD2 arose through retro-positioning of a processed GLUD1 mRNA to the X chromosome, a DNA replication mechanism that typically generates pseudogenes. However, by finding a suitable promoter, GLUD2 is thought to have gained expression in nerve and other tissues, where it adapted to their particular needs. Here we generated GLUD2 transgenic (Tg) mice by inserting in their genome a segment of the human X chromosome, containing the GLUD2 gene and its putative promoter. Double IF studies of Tg mouse brain revealed that the human gene is expressed in the host mouse brain in a pattern similar to that observed in human brain, thus providing credence to the above hypothesis. This expressional adaptation may have conferred novel role(s) on GLUD2 in human brain. Previous observations, also in GLUD2 Tg mice, generated and studied independently, showed that the non-redundant function of hGDH2 is markedly activated during early post-natal brain development, contributing to developmental changes in prefrontal cortex similar to those attributed to human divergence. Hence, GLUD2 adaptation may have influenced the evolutionary course taken by the human brain, but understanding the mechanism(s) involved remains challenging.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Evolução Molecular , Glutamato Desidrogenase/biossíntese , Heterozigoto , Animais , Expressão Gênica , Glutamato Desidrogenase/química , Glutamato Desidrogenase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Estrutura Secundária de Proteína , Cromossomo X/genética
20.
Front Pharmacol ; 9: 800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090063

RESUMO

An in silico drug discovery pipeline for the virtual screening of plant-origin natural products (NPs) was developed to explore new direct inhibitors of TNF and its close relative receptor activator of nuclear factor kappa-B ligand (RANKL), both representing attractive therapeutic targets for many chronic inflammatory conditions. Direct TNF inhibition through identification of potent small molecules is a highly desired goal; however, it is often hampered by severe limitations. Our approach yielded a priority list of 15 NPs as potential direct TNF inhibitors that were subsequently tested in vitro against TNF and RANKL. We thus identified two potent direct inhibitors of TNF function with low micromolar IC50 values and minimal toxicity even at high concentrations. Most importantly, one of them (A11) was proved to be a dual inhibitor of both TNF and RANKL. Extended molecular dynamics simulations with the fully automated EnalosMD suite rationalized the mode of action of the compounds at the molecular level. To our knowledge, these compounds constitute the first NP TNF inhibitors, one of which being the first NP small-molecule dual inhibitor of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...